Lines

This section will cover the following topics

Slope and the Slope Formula Equation of a Line in Slope-Intercept Form Graphing Lines

Slope and the Slope Formula

Every line travels in a specific direction. That direction is referred to as the slope of a line, which is often expressed as $m = \frac{RISE}{RUN}$; that is, a measure of how quickly a line rises (or falls) relative to quickly it runs (or travels to the right). The examples below illustrate this.

An analytical way of determining the slope of a line is through the slope formula, which is

 $m = \frac{y_2 - y_1}{x_2 - x_2}$. Here is an example of how the slope formula is used.

Using the graph on the right, will let

$$(x_1, y_1) = (2, 2)$$
, and
 $(x_2, y_2) = (6, 7)$.

From here we do a substitution into the

slope formula to get,

$$m = \frac{y_2 - y_1}{x_2 - x_2} = \frac{7 - 2}{6 - 2} = \frac{5}{4}$$

Equation of a Line in Slope-Intercept Form

The slope-intercept form of the equation of a line is y = mx + b, where *m* represents the slope and *b* represents the *y*-intercept. More precisely, the *y*-intercept is the point (0, b). Note that the *y*-intercept occurs when x = 0, thus the *y*-intercept is (0, b) no matter what the value of *b*. Let's look at some examples of identifying the slope and intercept from such equations.

Equation	Slope	y – intercept	Notes
y = 5x - 2	m = 5	(0, -2)	It may be helpful to write $m = \frac{5}{1}$; that is, <i>RISE</i> = 5 and <i>RUN</i> = 1
$y = -\frac{3}{5}x + \frac{1}{2}$	$m = -\frac{3}{5}$	$\left(0,\frac{1}{2}\right)$	Be sure to include the negative sign with the slope

	A Quick Tip		
	With <i>x</i> -intercepts and <i>y</i> -intercepts, we already know half of the ordered pair;		
	Remember a line crosses the <i>y</i> - <i>axis</i> (the <i>y</i> - <i>intercept</i>) when $x = 0$		
Olur	and a line crosses the <i>x</i> -axis (the <i>x</i> -intercept) when $y = 0$		

Graphing Lines

Graphing lines starts with a very simple concept. Draw two points and then connect them with a straight line. The only question is how you get the two points. We will take a look at two methods to graph the line $y = \frac{1}{2}x - 2$

Method 1: Determine the *x* and *y*-*intercepts*

Method 2: Graph the y-intercept and then use the slope to create a second point.

Practice Problems

Use the slope formula to find the slope of the line that connects the following points

1. (-2,7) and (4,1)2. (-1,-3) and (3,6)

Identify the slope and y-intercept given the following equations

3. y = -3x + 44. $y = \frac{2}{3}x - \frac{5}{7}$

Graph the following lines

5.
$$y = -2x + 5$$
 6. $y = \frac{3}{4}x - 2$

